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When is nuclear matter quarkyonic?

Always at large Nc, maybe for Nc = 3

Or: the unbearable lightness of nuclear matter...



Towards the phase diagram at Nc = ∞
‘t Hooft ’74: let Nc → ∞, with λ = g2 Nc fixed.
E.g.: gluon polarization tensor at zero momentum.

Πµµ(0) = g2

((

Nc +
Nf

2

)

T 2

3
+

Nfµ2

2π2

)

= λ
T 2

3
, Nc = ∞

For μ ~ Nc0 ~ 1, at Nc = ∞ the gluons are blind to quarks.

When μ ~ 1, since gluons don’t feel quarks, the
deconfining transition temperature is independent of μ!  Td(μ) = Td(0)

Chemical potential only matters when larger than mass:
     μBaryon > MBaryon.  Define mquark = MBaryon/Nc ; so μ > mquark .

“Box” for T < Tc ; μ < mquark: confined phase baryon free, since their mass ~ Nc

Thermal excitation ~ exp(-mB/T) ~ exp(-Nc) = 0 at large Nc.
     So hadronic phase in “box” = mesons & glueballs only, no baryons.



Phase diagram at Nc = ∞, I
At least three phases.  At large Nc, can use pressure, P, as order parameter.
Hadronic (confined): P ~ 1.  Deconfined, P ~ Nc2.  Thorn ’81; RDP ’84...
P ~ Nc: quarks or baryonic = “quark-yonic”.  Chiral symmetry restoration?

L. McLerran & RDP, 0706.2191
     N.B.: mass threshold at mq neglects (possible) nuclear binding, Son.
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Nuclear matter at large Nc 

μBaryon = √kF2 + M2 , kF = Fermi momentum of baryons. 
Pressure of ideal baryons density times energy of non-relativistic baryons:

Pideal baryons ∼ n(kF )
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This is small, ~ 1/Nc .  The pressure of the I = J tower of resonances is as small:

Two body interactions are huge, ~ Nc in pressure.    

At large Nc , nuclear matter is dominated by potential, not kinetic terms!
Two body, three body... interactions all contribute ~ Nc .
N.B.: these are all contact interactions.
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Window of nuclear matter
Balancing Pideal baryons ~ Ptwo body int.’s, interactions important very quickly,

For such momenta, only two body interactions contribute.

By the time kF ~ 1, all interactions terms contribute ~ Nc to the pressure.  

But this is very close to the mass threshold,

Hence “ordinary” nuclear matter is only in a very narrow window.

One quickly goes to a phase with pressure P ~ Nc.

     So are they baryons, or quarks?



Perturbative pressure
At high density, μ >> ΛQCD,  compute P(μ) in QCD perturbation theory.  

To ~ g4, (Freedman & McLerran)4 ’77
Ipp, Kajantie, Rebhan, & Vuorinen, hep-ph/0604060

Ppert.(µ) ∼ NcNf µ4 F0(g
2(µ/ΛQCD), Nf )

At μ ≠ 0, only diagrams with at least one quark loop contribute.  Still...

For μ >> ΛQCD, but μ ~ Nc0 ~ 1, calculation reliable.  

Compute P(μ) to ~ g6 ? No “magnetic mass” at μ ≠ 0, well defined ∀ (g2)n.



“Quarkyonic” phase at large Nc

As gluons blind to quarks at large Nc, for μ ~ Nc0 ~ 1, confined phase for T <  Td

This includes μ >> ΛQCD!  Central puzzle.  We suggest:

To the right: Fermi sea =>

Deep in the Fermi sea, k << μ , 
      looks like quarks.

But: within ~ ΛQCD of the Fermi surface,
     confinement => baryons 

We term combination “quark-yonic”

ΛQCD 

μ 

OK for μ >> ΛQCD.  When μ ~ ΛQCD, baryonic “skin” entire Fermi sea.

But what about chiral symmetry breaking?



Skyrmions and Nc = ∞ baryons

L = f2

π tr|Vµ|
2 + κ tr[Vµ, Vν ]2 , Vµ = U†∂µU , U = eiπ/fπ

Witten ‘83; Adkins, Nappi, Witten ‘83: Skyrme model for baryons

Baryon soliton of pion Lagrangian: fπ ~ Nc1/2 ,  κ ~ Nc , mass  ~ fπ2 ~ κ ~ Nc .

Above Lagrangian simplest form: presumably (?) infinite series in Vμ.

Single baryon: at r = ∞, πa = 0, U = 1.  At r = 0,  πa =  π ra/r . 
Baryon number topological: Wess & Zumino ’71; Witten ’83.

Huge degeneracy of baryons: multiplets of isospin and spin, I = J: 1/2 ... Nc/2.
     Obvious as collective coordinates of soliton, coupling spin & isospin

Dashen & Manohar ’93, Dashen, Jenkins, & Manohar ‘94:  
     Baryon-meson coupling ~ Nc1/2, 
     Cancellations from extended SU(2 Nf) symmetry. 



Skyrmion crystals 
Kutschera, Pethick & Ravenhall (KPR) ’84;  Klebanov ’85 + ... 
Lee, Park, Min, Rho & Vento, hep-ph/0302019; Park, Lee, & Vento, 0811.3731: 

At large Nc, baryons are heavy, so form a crystal.
Form Skyrmion crystal by taking periodic boundary conditions in a box.
Lee+... ‘03 : box of size L, units of length 1/(√κ fπ ), plot baryon number density:

At low density, chiral symmetry broken by Skyrme crystal, as in vacuum.

But chiral symmetry restored at nonzero L (density):  < U > = 0 in each cell.  

L=2.0→ ←L=3.5



Skyrmion crystals as quarkyonic matter
Why chiral symmetry restoration in a Skyrmion crystal?
Goldhaber & Manton ’87: due to “half” Skyrmion symmetry in each cell.

Easiest to understand with “spherical” crystal: sphere instead of cube...
KPR ’84, Ruback & Manton ’86, Manton ’87.  Consider the “trivial” map:  

Solution has unit baryon number per unit sphere, and so is a crystal.  
Solution is minimal when R < √2 (* 1/(√κ fπ).  

Forkel, Jackson, Rho, & Weiss ’89 =>
looks like standard chiral transition!
Excitations are chirally symmetric.

But Skyrmions are not deconfined.
Example of quarkyonic matter,
chirally broken and chirally symmetric.

U(r) = exp(i f(r) r̂ · τ) ; f(r) = π
(
1− r

R

)

<σ>↑

R→
 ↑√2



T↑

Td

μ→mq

↓1st order

Phase diagram at Nc = ∞, II

χ sym. 
broken

Chiral transition
Quarkyonic

Deconfined

Hadronic
“Box”

Chirally symmetric

We suggest: quarkyonic phase includes chiral trans.  Order by usual arguments.

Mocsy, Sannino & Tuominen hep-th/0308135:
       splitting of transitions in effective models
But: quarkyonic phase confined.  Chirally symmetric baryons?



Baryons at Large Nf 
Veneziano ‘78: take both Nc and Nf  large.  Mesons Mij : i,j = 1...Nf . 
Thus mesons interact weakly, but there are many mesons.  
Thus in the hadronic phase, mesons interact strongly:

Π ∼ Nf g2
3π ∼ Nf/Nc

Pressure large in both phases: 
       ~ Nf2 in hadronic phase, ~Nc2, Nc Nf in “deconfined” phase.
Polyakov loop also nonzero in both phases.

Baryons: lowest state with spin j
has Young tableaux (Nc = 2n + 1) =>

dj =
(2j + 2) (Nf + n + j)! (Nf + n− j − 2)!
(Nf − 1)! (Nf − 2)! (n + j + 2)! (n− j)!



Baryons at Large Nf: order parameters 

dj ∼ e+Nc f(Nf /n) , f(x) = (1 + x) log(1 + x)− x log(x)

Y. Hidaka, L. McLerran & RDP, 0803.0279:  Use Sterling’s formula,

Degeneracy of baryons increases exponentially.

Argument is heuristic: baryons are strongly interacting.  
Still, difficult to see how interactions can overwhelm exponentially growing 
spectrum, even for the lowest state.  

Use baryons as order parameter.  At T=0, fluctuations in baryon number,
<B2> ≠ 0 when Nc f(Nc/n) = mB/T, or

Tqk = f(Nf/n)
mB

Nc

At μ ≠ 0, baryon number itself:
     <B> ≠ 0 when Nc f(Nc/n) = (mB - Nc μ)/T: 

Tqk = f(Nf/n)
(

mB

Nc
− µ

)



Possible phase diagrams as Nf increases
The “rectangle” for small Nf becomes smoothed. 
Eventually, maybe the quarkyonic line merges with that for baryon condensation.
All VERY qualitative.  Clearly many possible phase diagrams!
With SUSY: condensation of Higgs fields as well.

Small Nf

Large Nf



Chiral Density Waves (perturbative)
Excitations near the Fermi surface?

At large Nc, color superconductivity suppressed, 
~ 1/Nc: pairing into two-index state:

Also possible to have “chiral density waves”, pairing of quark and anti-quark:
Deryagin, Grigoriev, & Rubakov ’92.  Shuster & Son, hep-ph/9905448.
Rapp, Shuryak, and Zahed, hep-ph/0008207.

Order parameter 
Sum over color, so not suppressed by 1/Nc.

Pair quark at + pf with anti-quark at - pf : for a fixed direction.
Breaks chiral symmetry, with state varying ~ exp(- 2 pf z).

Wins over superconductivity in low dimensions.  Loses in higher.
Shuster & Son ‘99:  in perturbative regime, CDW only wins for Nc > 1000 Nf

〈ψ(−"pf ) ψ(+"pf )〉



Quarkyonic chiral density waves

Consider meson wave function, with kernel:
Confining potential in 3+1 dimensions like 
Coulomb potential in 1+1 dim.s:

In 1+1 dim.’s, behavior of massless quarks near Fermi surface maps ~ μ  = 0!
Mesons in vacuum naturally map into CDW mesons.

Witten ‘84: in 1+1 dim.’s, use non-Abelian bosonization for QCD.
a, b= 1...Nc.  i,j = 1... Nf.

∫
dk0 dkz

∫
d2k⊥

1
(k2

0 + k2
z + k2

⊥)2
∼

∫
dk0 dkz

1
k2
0 + k2

z

Steinhardt ’80.  Affleck ’86.  Frishman & Sonnenschein, hep-th/920717...
Armoni, Frishman, Sonnenschein & Trittman, hep-th/9805155; AFS, hep-th/0011043..
Bringoltz 0901.4035; Galvez, Hietanan, & Narayanan, 0812.3449.

J ij
+ = ψ

a,i
ψa,j ∼ g−1∂+g ; Jab

+ = ψ
a,i

ψb,i ∼ h−1∂+h .



Bosonized quarkyonic matter
After non-Abelian bosonization, action factorizes into sum of g, in SU(Nf), and
h, in SU(Nc).  Action for g is

8π SWZW =
∫

d2z trB2
i + 2/3

∫
d3y εijk trBiBjBk , Bi = g−1∂ig .

Action for h,  is a SU(Nc) gauged WZW model.  But: g and h decouple!
Spectrum of h complicated, involves massive modes, like usual ‘t Hooft model.

Spectrum of g is that of usual WZW model, with massless modes.

Hence in 1+1 dim.’s, CDW are natural, but with massless excitations thereof.

In 3+1 dim.’s: have highly anisotropic state, somen-state:
Y. Hidaka, T. Kojo, L. McLerran, & RDP ’09...

Chiral condensate ~ ΛQCD2/μ2.  Length of somen-state large, ~ exp(Nc).
Quantum fluctuations tend to scramble the somen.  



Hadronic

T↑

μB→MN

Deconfined

Quarkyonic

?
χ sym. 
broken Chirally symmetric

Chiral trans.

XCritical end-point Deconfining trans.

Guess for phase diagram in QCD
Pure guesswork: deconfining & chiral transitions split apart at critical end-point?
Line for deconfining transition first order to the right of the critical end-point?
Critical end-point for deconfinement, or continues down to T=0?
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Solution to dense QCD in 1+1 dimensions
Bringoltz, 0901.4035:  ‘t Hooft model, with massive quarks.
Works in Coulomb gauge, in canonical ensemble: fixed baryon number.
Solves numerically equations of motion under constaint of nonzero baryon #
Finds chiral density wave.

N.B.: for massive quarks, should have massless excitations, but with energy
~1/Nc.
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Lattice: nucleon-nucleon potentials
Ishii, Aoki & Hatsuda, PACS-CS, 0903.5497
Nucleon-nucleon potentials from quenched and 2+1 flavors.  
Pions heavy: 700 MeV (left) and 300 MeV (right)

Essentially zero potential plus strong hard core repulsion 
 (hard core stronger with dynamical quarks)
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Lattice: Lambda-proton potentials

Nemura, Ishii, Aoki & Hatsuda, PACS-CS, 0902.1251

Nucleon-nucleon potentials from quenched and 2+1 flavors.  
Pion ~ 300 MeV, Kaon ~ 600 MeV.

Again, essentially zero potential plus strong hard core repulsion.
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Purely pionic nuclear matter

At infinite Nc, integrate out all degrees of freedom except pions.

Power series in 

Not just the usual Skyrme model.  Infinite set of couplings, including
terms with more than two time derivatives.  At fourth order, add:
which is part of the usual Gasser-Leutwyler expansion.

At sixth order, have 
from integrating out the ω meson.  This has only two times derivatives.  

Other terms at sixth order:

Do not worry about higher time derivatives.  

Use only as effective theory valid for momenta less than lightest particle above 
the pion & kaon: sigma, omega, rho...

Vµ = U†∂µU , U = eiπ/fπ

(
tr V 2

µ

)3
,

(
tr V 2

µ

)
tr[Vµ, Vν ]2 . . .

(
tr V 2

µ

)2

(Jα)2 ; Jα = tr (VβVγVδ)

J.-P. Blaizot, L. McLerran, Maciek Nowak, & RDP ’09....



Baryons at infinite Nc

Let the effective, purely pionic Lagrangian be 

Take each and every coupling to be proportional to Nc.  Then we can compute
a “purely” pionic baryon as the Skyrmion in infinite space, and a baryonic
crystal in a box.

Consistency?  Not clear.  But have an infinite number of couplings, and no way
to obtain their values.  Further, all couplings contribute equally to the nucleon
mass, properties of the crystal, etc.  

So?  At infinite Nc, fπ ~ √Nc is large.  (Why 4 π fπ expansion parameter of χPT?)

At low momentum, baryons interact as

Weinberg ’67: by field redefinition, this becomes

Lπ(Vµ)

ψ
(
i/∂ + MB eiτ ·πγ5/fπ

)
ψ

ψ
(
iW /∂ W−1 + MB

)
ψ , W = eiτ ·πγ5/2fπ



Soft pions and baryons at infinite Nc

Expanding in powers of pions,

Sure.  So what?  Valid when momenta are << fπ: but this is big!

Thus at infinite Nc, if there is a purely pionic effective Lagrangian, the 
baryons are free.  Breaks down at distances 1/fπ: short range repulsion?

Crystal: energy/baryon is zero, except when the density is > 1/fπ3.

Depends crucially upon existence of purely pionic effective Lagrangian; else
exchange of other hadrons destroys computation.

Hence: without chiral symmetry, expect strong interactions ~ Nc.
Seen in the ‘t Hooft model in 1+1 dimensions: energy/baryon ~ Nc.

Related: Goldberger-Trieman at large Nc?  
Is gA of order one or order Nc?

Lint ∼
1
fπ

ψ γ5τ · /∂π ψ + . . .

gA = gπNN/(2fπMB)



Asymptotically large μ, grows with Nc

For μ ~ (Nc)p, p > 0, gluons feel the effect of quarks.  Perturbatively,

Ppert.(µ, T ) ∼ NcNf µ4 F0 , NcNf µ2 T 2 F1 , N2
c T 4 F2 .

First two terms from quarks & gluons, last only from gluons.  Two regimes:
          
μ ~ Nc1/4 ΛQCD : Nc μ4 F0 ~ Nc2 F2 ~ Nc2 >> Nc μ2 F1 ~ Nc3/2.
        Gluons & quarks contribute equally to pressure; quark cont. T-independent.

μ ~ Nc1/2  ΛQCD : New regime: m2Debye ~ g2 μ2 ~ 1, so gluons feel quarks.

     Nc μ4 F0 ~ Nc3 >> Nc μ2 F1 , Nc2 F2 ~ Nc2 .
     Quarks dominate pressure, T-independent.

Eventually, first order deconfining transition can either: 
end in a critical point, or bend over to T = 0: ?


